

HERZLICH WILLKOMMEN

zum EXPERTEN-VORTRAG mit BORIS WOLLSCHEID

THEMA ELEKTROENERGIE-EFFIZIENZ

SYSTEMS by HOWATHERM

Wir freuen uns Sie bei unserem Online-Vortrag begrüßen zu dürfen.

Um einen reibungslosen Ablauf ermöglichen zu können, bitten wir Sie, die folgenden Punkte zu beachten:

- Schalten Sie Ihre Mikrofone für die Dauer des Vortrags aus
- Fragen können während des Vortrags über die Chat-Funktion gestellt werden, die Beantwortung erfolgt im Anschluss
- Nennen Sie bitte die Foliennummer auf die sich Ihre Frage bezieht
- Wenn Sie sich in der anschließenden Diskussion per Mikrofon zu Wort melden möchten, melden Sie dies bitte über die Chat-Funktion an

© HOWATHERM Klimatechnik GmbH

HERZLICH WILLKOMMEN

zum EXPERTEN-VORTRAG mit BORIS WOLLSCHEID

THEMA ELEKTROENERGIE-EFFIZIENZ

SYSTEMS by HOWATHERM

Aufgaben

Luftförderung

$$P_L = q_v \cdot \Delta p$$

- Ventilator
- Motor
- Antrieb
- Regelung

Elektrische Leistungsaufnahme

$$P_m = q_v \cdot \Delta p / \eta_s$$

P_m Elektrische Leistungsaufnahme [W]

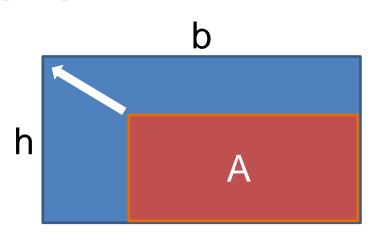
q_v Volumenstrom [m³/s]

Δp Differenzdruck der Anlage [Pa]

η_s Gesamtwirkungsgrad des Systems [-]

$$\eta_S = \eta_V \cdot \eta_M \cdot \eta_A \cdot \eta_R$$

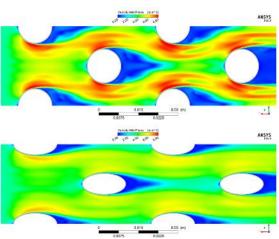
Ventilator • Motor • Antrieb • Regelung


Druckverluste reduzieren

$$\Delta p = \xi \cdot \frac{1}{2} \cdot \rho \cdot w^2$$

- Δp Differenzdruck der Anlage [Pa]
- ξ Strömungsbeiwert [-]
- ρ Luftdichte [kg/m³]
- w Strömungsgeschwindigkeit [m/s]

$$w = q_v / A$$


- q_v Volumenstrom [m³/s]
- A Querschnittsfläche [m²]

Druckverluste reduzieren

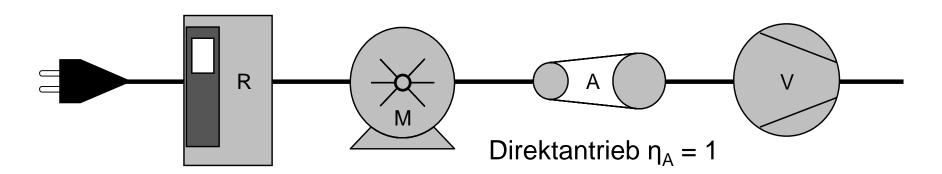
Strömungsoptimierte Komponenten (ξ reduzieren)

Druckverluste reduzieren

Energieeffizienz

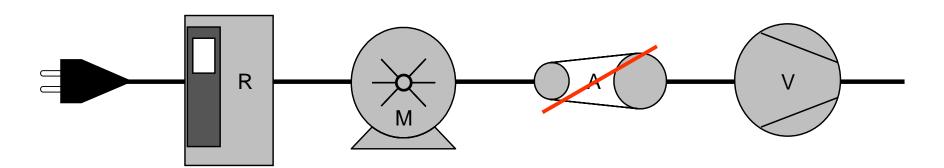
Entfall von Komponenten (z. B. TA, Erhitzer, Kühler)

Bypässe in Komponenten


Hybridkomponenten (Befeuchtung)

Gesamtwirkungsgrad des Systems η_s

$$\eta_{S} = \eta_{R} \cdot \eta_{M} \cdot \eta_{A} \cdot \eta_{V}$$


P_m
Elektrische Leistung

$$\eta_S = P_L / P_m$$

Luftleistung

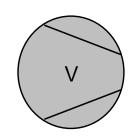
Gesamtsystem - Leistungen

$$\eta_{S} = \eta_{R} \cdot \eta_{M} \cdot \eta_{A} \cdot \eta_{V}$$

$$P_m = q_v \cdot \Delta p / \eta_S$$

$$P_N = q_v \cdot \Delta p / p_A / \eta_V$$

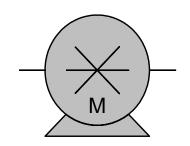
$$P_L = q_v \cdot \Delta p$$


$$P_N = P_m \bullet \eta_R \bullet \eta_M$$

Elektrische Leistung

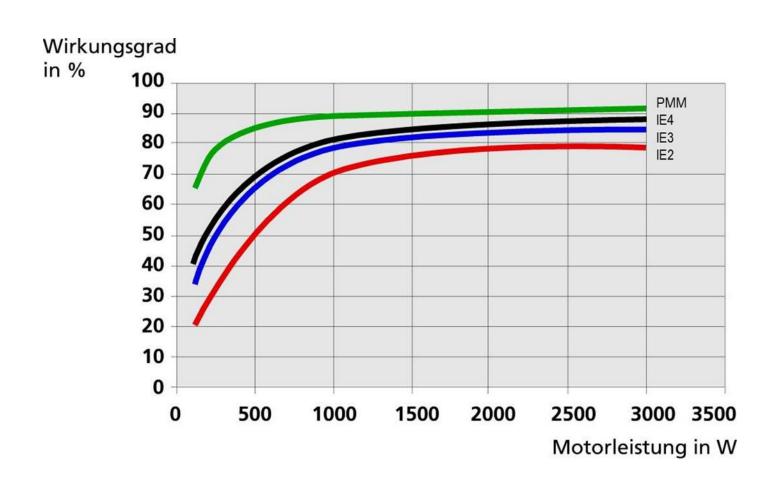
Motornennleistung

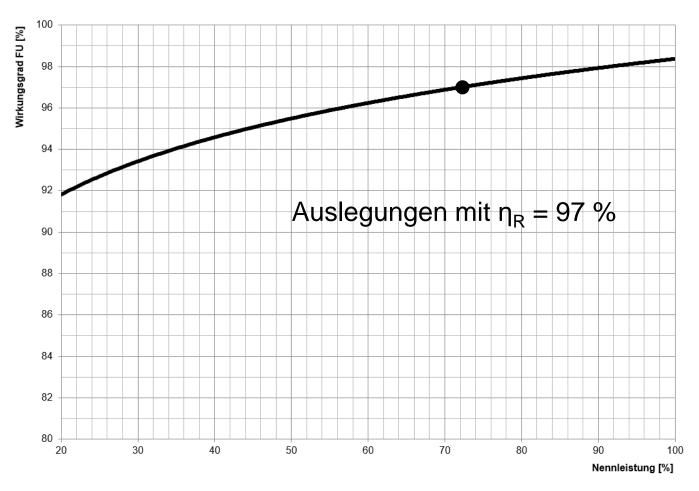
Luftleistung

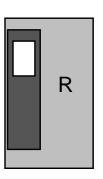

Wirkungsgrade von Ventilatoren η_V

Rückwärts gekrümmte Radiallaufräder (direktangetriebene Freiläufer) im Bestpunkt

Baugröße	7 Schaufeln profiliert	6 Schaufeln hohlprofiliert	5 Schaufeln 3D - profiliert
250	71 %	73 %	73 %
315	72 %	76 %	75 %
400	73 %	76 %	77 %
500	73 %	77 %	77 %
710	73 %	77 %	79 %
900	73 %	77 %	79 %
1000	73 %	77 %	79 %


Wirkungsgrade von AC-Motoren η_M


n = 1500 1/min


Nennleistung	IE2	IE3	IE4
1,1 kW	81,4 %	84,1 %	-
2,2 kW	84,3 %	86,7 %	89,5 %
4,0 kW	86,6 %	88,6 %	90,4 %
7,5 kW	88,7 %	90,4 %	92,6 %
15,0 kW	90,6 %	92,1 %	93,9 %
30,0 kW	92,3 %	93,6 %	94,9 %
55,0 kW	93,5 %	95,1 %	95,7 %

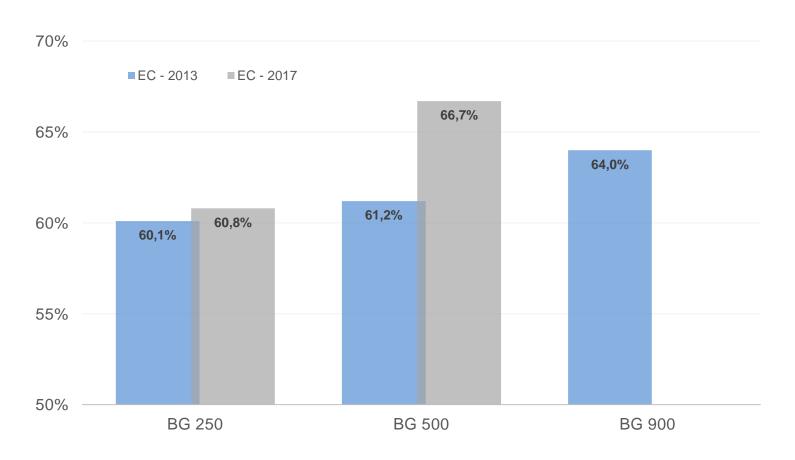
Wirkungsgrade der Motoren η_M

Wirkungsgrad der Regelung η_R



Gesamtwirkungsgrad des Systems η_s

mit AC-Motor und Frequenzumrichter


inkl. Einbau- und Teillastabwertung

Gesamtwirkungsgrad des Systems η_s

mit EC-Motor und integrierter Regeleinrichtung

inkl. Einbau- und Teillastabwertung

$$P_{SFP} = P_m / q_v = \Delta p / \eta_s$$

DIN EN 16798-3

P_{SFP} spezifische Ventilatorleistung [Ws/m³]

P_m Elektrische Leistungsaufnahme [W]

q_v Volumenstrom [m³/s]

Δp Differenzdruck der Anlage [Pa]

η_s Gesamtwirkungsgrad des Systems [-]

Klassifizierung

DIN EN 16798-3

SFP-Klasse	P _{SFP}		
SFP 0	< 300 Ws/m³		
SFP 1	≤ 500 Ws/m³		
SFP 2	≤ 750 Ws/m³		
SFP 3	≤ 1.250 Ws/m³		
SFP 4	≤ 2.000 Ws/m³		
SFP 5	≤ 3.000 Ws/m³		
SFP 6	≤ 4.500 Ws/m³		
SFP 7	> 4.500 Ws/m ³		

Spezifische Ventilatorleistung

Erweiterung P_{SFP}

DIN EN 16798-3

Komponente	P _{SFP}		
Zusätzliche maschinelle Filterstufe	+ 300 Ws/m ³		
HEPA Filter nach EN 1822-3	+ 1.000 Ws/m ³		
Gasfilter	+ 300 Ws/m ³		
WRG Klasse H2 oder H1	+ 300 Ws/m ³		

Druckverluste zu Wirkungsgrad

SFP-Klasse	P _{SFP} [Ws/m³]	∆p bei η = 0,55 [Pa]	Δp bei η = 0,65 [Pa]	Δp bei η = 0,70 [Pa]
SFP 0	< 300			
SFP 1	≤ 500	275	325	350
SFP 2	≤ 750	410	485	525
SFP 3	≤ 1.250	685	810	875
SFP 4	≤ 2.000	1.100	1.300	1.400
SFP 5	≤ 3.000	1.650	1.950	2.100
SFP 6	≤ 4.500	2.475	2.925	3.150
SFP 7	> 4.500			

Auslegungsparameter

- Betriebspunkt der Anlage
 - Statische Druckerhöhung
 - Volumenstrom
 - Leistungsreserve
- Gerätegröße
 - Lichte Innenmaße
- Anwendungsgebiet (Hygiene, Aqua, ATEX)
- Einsatzgrenzen (z. B. Temperatur)

Anwendungsbeispiel

Volumenstrom 70.000 m³/h

Druckerhöhung 1.432 Pa

Energiekosten 0,15 €/kWh

Nutzungsdauer 15 Jahre

Laufzeit 8.760 h/a

Prüfung der optimalen Kombination

Ventilatortechnologie

Motortechnologie (AC, EC, PM)

Anzahl der Ventilatoreinheiten

Auslegung

Beurteilungskriterien

- Life Cycle Costs (LCC)
- Gewichtung 70 %

- Investitionskosten
- Betriebskosten
- Wartungskosten
- Akustik

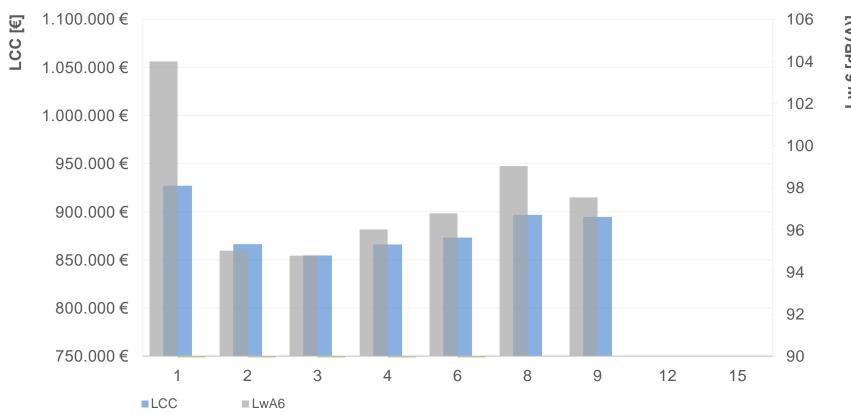
Gewichtung 30 %

Schallleistungspegel

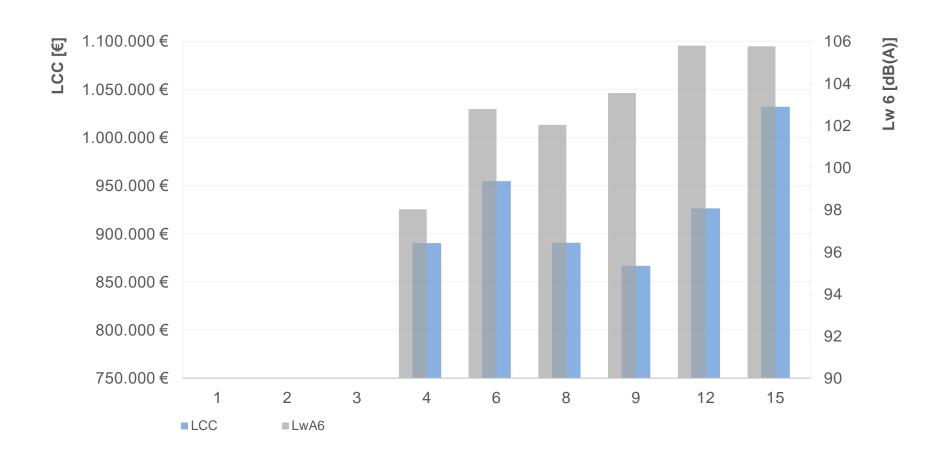
Auslegung


System ETA

by HOWATHERM

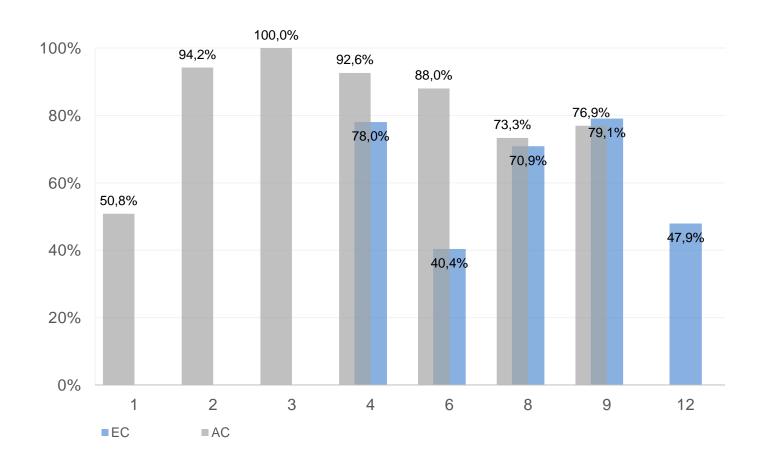

mit AC-Motor

Kompletteinheiten



mit EC-Motor

System ETA mit AC-Motor


Kompletteinheiten mit EC-Motor

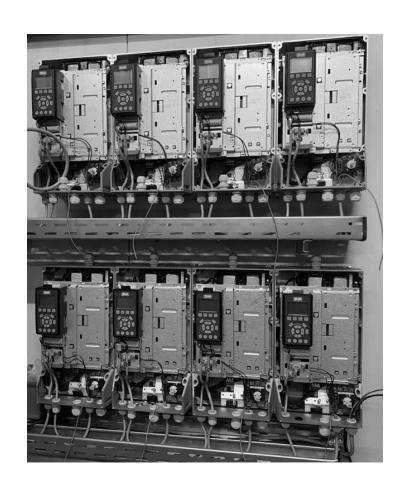
© **HOWATHERM** Klimatechnik GmbH

Empfehlung

bei Gewichtung: LCC = 70 % Akustik = 30 %

Vorteile

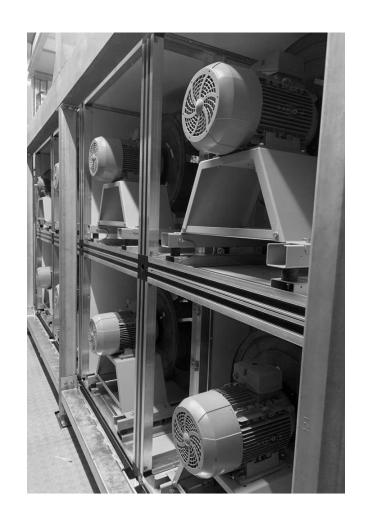
- Redundanz
- Betriebssicherheit
- Geringe Baulänge (bei EC)
- Gleichmäßige Luftströmung
- Modernisierung (Retrofit bei EC)



Ventilatorwände

Nachteile

- Energieeffizienz
- Akustik
- Installationsaufwand
- Wartungsaufwand
- MSR Aufwand
- Auswuchtgüte
- Schwingungsentkopplung


Niedrige Leistung

- Volumenstrom nur so hoch wie nötig
- Druckverluste reduzieren
 - Strömungsgeschwindigkeit
 - Strömungsoptimierte Komponenten
 - Hybridkomponenten
 - Mehrfachfunktionale WRG
- Wirkungsgrade erhöhen

Ventilatorsysteme

- Systeme auswählen
 - Funktion
 - sonstige Kriterien
- Anzahl optimieren
 - Lebenszykluskosten
 - Schallwerte
 - Auswahl der Komponenten nach Systemwirkungsgrad

HERZLICHEN DANK

technikwissen@howatherm.de

ZEIT für Ihre FRAGEN und ANREGUNGEN

SYSTEMS by HOWATHERM